手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
1303年朱世杰说:“第n行的m个数可表示为c(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。
可用此性质写出整个杨辉三角。
即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
即c(n+1,i)=c(n,i)+c(n,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。
11^0=1,11^1=1x10^0+1x10^1=11,11^2=1x10^0+2x10^1+1x10^2=121,11^3=1x10^0+3x10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1x10^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。
1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
1708年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。
1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”
1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。
1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。
其中是亏格为0的欧拉定理。
对图论有重大帮助。
对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。
有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
兵王赵辰重回都市,和双胞胎姐妹花做邻居,小日子过得逍遥自在。但是黑暗降临的时候,他依然是这个世界的王者,为了复仇,赵辰将会引爆整个都市!...
丁朵朵要嫁给神秘大少爷,去庄园第一天晚上就见到了一个帅气的陌生裸男。他欺负她,调戏她,无恶不作。晚上溜进卧室偷亲她,白天在学校打压她。他食髓知味,变本加厉。终于有一天,玉树临风的他站在她眼前,丁朵朵,嫁给我。不要,权邑臣,我要休夫!!...
嚣张版清晨,我从四百万平方公里的大床上起来,九条巨龙拉着宇宙飞船接我去厕所,108名来自各个位面的女仆伺候我洗漱,开着由哨兵维修好的零号机去离这14000公里远的饭店,然后用世纪浓汤漱嘴逗逼版我住隔壁我姓王,你指不定就是我的种,所以跪下,我的时间非常值钱,把你的信用点和兵都交出来,不然我就认作你爹标准版这只是一个普通的青年(真的很普通),被迫加入帝国的位面远征军的故事,从此他过上了升职加薪当上总经理出任CEO迎娶白富美走上人生巅峰的幸福日子,想想还有点小激动...
妹妹失踪,凭着父亲留下的武功,被迫进入江湖寻妹,期间参加学院之争,实力突飞猛进,正邪对立,难以抵挡,木米寻找神剑,保的江湖恢复平静。...
夏冬穿越到一拳超人世界,获得进食强化的能力,只要不断进食,他的身体就可以变得越来越强悍。靠着这个能力,夏冬能否成为最强英雄?不能!...
他是扁鹊108代后裔,他又是三十六路中医大联盟盟主。他救人无数却杀人如麻,他爱国爱民却身败名裂。他说宁让天下人负我,也要救中医与水火。2013最火医流文,欢迎大家订阅支持。...